If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+17u-9=0
a = 2; b = 17; c = -9;
Δ = b2-4ac
Δ = 172-4·2·(-9)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-19}{2*2}=\frac{-36}{4} =-9 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+19}{2*2}=\frac{2}{4} =1/2 $
| (5y-1)+5=1-y | | -3/4=1/2a-1/5 | | 8(a-3)=56 | | 180-(3x-18)-(2x)=x | | x2=3.6 | | x^-5x-10=0 | | x+(-8)=16-(-4x) | | 2.4(5h+10)13=27 | | F(-10)=14-3x | | X2+2x-20+10x-50=90 | | 5+p/5=2 | | 28=2z+2z | | Y=1.1x-5.8 | | x/3-7x-18=0 | | 3x-10=5x+9 | | 0.2^(x)=4 | | 3x-6=-7+7 | | 36+2n=5n-6 | | x/4+2=-7 | | 3j+9=4j | | 11x-37+9x-6=X | | 5.1-8x=3.3-10x | | F(x)=2x-25 | | 5084-(y-299)=568 | | 3.4+0.2y=0.7(y-2) | | (x+326)-569=674 | | 0.7(2-3y)=-7 | | 0=y^2-10y+25 | | X2y=9 | | 200(x-5)=100(x+1)+500 | | 1/2(h=6)=0 | | .20x+.45(70)=48.5 |